

Mark Scheme (Results)

Summer 2013

GCE Further Pure Mathematics 3 (6669/01)

Physics And Maths Tutor.com

Question Number	Scheme		Marks
	Mark (a) a	nd (b) together	
1. (a) & (b)	$ae = 13$ and $a^2(e^2 - 1) = 25$	Sight of both of these (can be implied by their work) (allow \pm ae = \pm 13 or \pm ae = 13 or ae = \pm 13)	B1
	Solves to obtain $a^2 = \dots$ or $a = \dots$	Eliminates e to reach $a^2 = \dots$ or $a = \dots$	M1
	a = 12	Cao (not ± 12) unless -12 is rejected	A1
	e = 13/ "12"	Uses their a to find e or finds e by eliminating a (Ignore \pm here) (Can be implied by a correct answer)	M1
	$x = (\pm)\frac{a}{e}, = \pm \frac{144}{13}$	M1: $(x =)(\pm)\frac{a}{e}$ \pm not needed for this mark nor is x and even allow $y = (\pm)\frac{a}{e}$ here – just look for use of $\frac{a}{e}$ with numerical a and e . A1: $x = \pm \frac{144}{13}$ oe but must be an equation (Do not allow $x = \pm \frac{12}{13}$)	M1, A1
	70.7	1 2 24 20	Total 6
		uation for the ellipse (b ² =a ² (1-e ²))	

Question Number	Scheme	Marks
2. (a)	$k \operatorname{arsinh}\left(\frac{2x}{3}\right) (+c)$ or $k \ln[px + \sqrt{(p^2x^2 + \frac{9}{4}p^2)}] (+c)$	M1
	$\frac{1}{2} \operatorname{arsinh} \left(\frac{2x}{3} \right) (+c) \text{or} \frac{1}{2} \ln[px + \sqrt{(p^2x^2 + \frac{9}{4}p^2)}] (+c)$	A1
		(2)
(b)	So: $\frac{1}{2} \ln \left[6 + \sqrt{45} \right] - \frac{1}{2} \ln \left[-6 + \sqrt{45} \right] = \frac{1}{2} \ln \left[\frac{6 + \sqrt{45}}{-6 + \sqrt{45}} \right]$	M1
	Uses correct limits <u>and</u> combines logs	
	$= \frac{1}{2} \ln \left[\frac{6 + \sqrt{45}}{-6 + \sqrt{45}} \right] \left[\frac{6 + \sqrt{45}}{6 + \sqrt{45}} \right] = \frac{1}{2} \ln \left[\frac{(6 + \sqrt{45})^2}{9} \right]$	M1
	Correct method to rationalise denominator (may be implied) Method must be clear if answer does not follow their fraction	
	$= \ln[2 + \sqrt{5}] \text{ (or } \frac{1}{2}\ln[9 + 4\sqrt{5}] \text{)}$	Alcso
	Note that the last 3 marks can be scored without the need to rationalise e.g.	
	$2 \times \frac{1}{2} \left[\ln[2x + \sqrt{(4x^2 + 9)}] \right]_0^3 = \ln(6 + \sqrt{45}) - \ln 3 = \ln(\frac{6 + \sqrt{45}}{3})$	
	M1: Uses the limits 0 and 3 and doubles	
	M1: Combines Logs A1: $\ln[2+\sqrt{5}]$ oe	
	πι. μ[2+ γ3]σε	(3)
		Total 5
Alternative for (a)	$x = \frac{3}{2}\sinh u \Rightarrow \int \frac{1}{\sqrt{9\sinh^2 u + 9}} \cdot \frac{3}{2}\cosh u du = k \operatorname{arsinh}\left(\frac{2x}{3}\right) (+c)$	M1
	$\frac{1}{2} \operatorname{ar} \sinh \left(\frac{2x}{3} \right) (+c)$	A1
Alternative for (b)	$\left[\frac{1}{2}\operatorname{arsinh}\left(\frac{2x}{3}\right)\right]_{-3}^{3} = \frac{1}{2}\operatorname{arsinh} 2 -\frac{1}{2}\operatorname{arsinh} -2$	
	$\frac{1}{2}\ln(2+\sqrt{5}) - \frac{1}{2}\ln(\sqrt{5}-2) = \frac{1}{2}\ln(\frac{2+\sqrt{5}}{\sqrt{5}-2})$	M1
	Uses correct limits and combines logs	
	$= \frac{1}{2} \ln(\frac{2+\sqrt{5}}{\sqrt{5}-2} \cdot \frac{\sqrt{5}+2}{\sqrt{5}+2}) = \frac{1}{2} \ln(\frac{2\sqrt{5}+4+5+2\sqrt{5}}{5-4})$	M1
	Correct method to rationalise denominator (may be implied) Method must be clear if answer does not follow their fraction	
	$= \frac{1}{2} \ln[9 + 4\sqrt{5}]$	A1cso

Question Number	Scho	eme		Marks
3.	$(\frac{\mathrm{d}x}{\mathrm{d}\theta}) = 2\sinh 2\theta$ and $(\frac{\mathrm{d}y}{\mathrm{d}\theta}) = 4\cosh\theta$		B1	
	Or equivalent correct derivatives			
	$A = (2\pi) \int 4 \sinh \theta \sqrt{"2\sin^2 \theta}$	$nh 2\theta''^2 + "$	$4\cosh\theta^{"2}d\theta$	
	or $A = (2\pi) \int 4 \sinh \theta \sqrt{(1 + (\frac{\text{"}4\cosh \theta\text{"}}{\text{"}2\sinh 2\theta\text{"}})^2} .2 \sinh 2\theta d\theta$		M1	
	Use of correct formula including r chain rule used. Allow the			
	$A = 32\pi$ sinl	$h\theta \cosh^2\theta$	${\sf d} heta$	
	$A = 32\pi \int (\sinh \theta)$			B1
	Completely correct expression for This mark may be recovered la	ter if the	2π is introduced later	
	$A = \frac{32\pi}{3} \left[\cosh^3 \theta \right]_0^1$	of a corredepender	d attempt to integrate a expression or a multiple ect expression – nt on the first M1 ect expression	dM1A1
	$=\frac{32\pi}{3}\left[\cosh^3 1-1\right]$	M1: Uses correctly previous	s the limits 0 and 1 . Dependent on both	ddM1A1
			(7)	
	Example Alternative Into		_	
	$\int \sinh \theta \cosh^2 \theta d\theta = \int \sinh \theta (1 + \sin \theta) \int (\sinh \theta + \frac{1}{4} \sinh 3\theta - \frac{3}{4} \sinh \theta)$	$d\theta = \frac{1}{4} \int ($	$\sinh \theta + \sinh 3\theta $ d θ	D.G.A.I
	$= \frac{1}{4}\cosh\theta + \frac{1}{12}\cosh 3\theta$ $\mathbf{dM1:} \int \sinh\theta \cosh^2\theta d\theta = p\cosh\theta + q\cosh 3\theta$		dM1A1	
	$\mathbf{A1} \colon 32\pi \left[\frac{1}{4} \cosh \left(\frac{1}{4} \right) \right]$		_	
	$A = 8\pi \left[\cosh\theta + \frac{1}{3}\cosh 3\theta\right]_0^1$ $= 8\pi (\cosh 1 + \frac{1}{3}\cosh 3 - \cosh 0 - - $	cosh 0)	M1: Uses the limits 0 and 1 correctly. Dependent on both previous M's	ddM1A1
	$\frac{32\pi}{3} \Big[\cosh^3 1 - 1 \Big]$		A1: Cao	

Physics And Maths Tutor.com

Question Number	Scheme		Marks
3.	Alternative Car	tesian Approach	
	$x = 1 + \frac{y^2}{8}$	Any correct Cartesian equation	B1
	$\frac{dx}{dy} = \frac{y}{4} \text{or} \frac{dy}{dx} = \frac{\sqrt{2}}{(x-1)^{\frac{1}{2}}}$	Correct Derivative	B1
	$A = \int 2\pi \cdot y \sqrt{1 + \left(\frac{y}{4}\right)^2} dy \text{ or } A =$	$A = \int 2\pi \cdot y \sqrt{1 + \left(\frac{y}{4}\right)^2} dy \text{ or } A = \int 2\pi \cdot \sqrt{8} (x - 1)^{\frac{1}{2}} \sqrt{1 + \left(\frac{2}{x - 1}\right)} dx$	
	Use of a correct formula		
	$A = 2\pi \times \frac{2}{3} \times 8 \left(1 + \frac{y^2}{16} \right)^{\frac{3}{2}} \text{ or } A = \frac{4\pi\sqrt{8}}{3} x + 1^{\frac{3}{2}}$		dM1 A1
	M1: Convincing attempt to integrate a relevant expression – dependent on the first M1 but allow the omission of 2π A1: Completely correct expression for A		
	$A = 2\pi \times \frac{2}{3} \times 8 + \sinh^2 1^{\frac{3}{2}} - 2\pi \times \frac{2}{3}$	$\times 8 \text{ or } 2\pi \times \frac{2}{3} \times \sqrt{8} + \cosh 2^{\frac{3}{2}} - \frac{32\pi}{3}$	ddM1
	Correct use of limits $(0 \rightarrow 4\sinh 1 \text{ for y or } 1 \rightarrow \cosh 2 \text{ for } x)$		
	Use $1 + \sinh^2 1 = \cosh^2 1$	Use $\cosh 2 = 2 \cosh^2 1 - 1$	
	to give $\frac{32\pi}{3} \left[\cosh^3 1 - 1 \right]$	to give $\frac{32\pi}{3} \left[\cosh^3 1 - 1 \right]$	A1

Physics And Maths Tutor.com

Question Number	Sch	eme	Marks
4.	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{40}{\sqrt{(x^2 - 1)}} - 9$	M1: $\frac{dy}{dx} = \frac{p}{\sqrt{(x^2 - 1)}} - q$ A1: Cao	M1 A1
	Put $\frac{dy}{dx} = 0$ and obtain $x^2 =$ (Allow sign errors only)	$e.g.\left(\frac{1681}{81}\right)$	dM1
	$x = \frac{41}{9}$	M1: Square root A1: $x = \frac{41}{9}$ or exact equivalent $(\text{not} \pm \frac{41}{9})$	M1 A1
	$y = 40 \ln \left\{ \left(\frac{41}{9} \right) + \sqrt{\left(\frac{41}{9} \right)^2 - 1} \right\} - "41"$	Substitutes $x = \frac{41}{9}$ into the curve and uses the logarithmic form of arcosh	M1
	So $y = 80 \ln 3 - 41$	Cao	A1
			Total 7

Question Number	Scho	eme	Marks
5. (a) (i)&(ii)	$\begin{pmatrix} 1 & 1 & a \\ 2 & b & c \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1+a \\ b+c \\ 1 \end{pmatrix} =$	$= \lambda_1 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \text{ and so } a = -1, \ \lambda_1 = 1$	M1, A1, A1
	M1: Multiplies out matrix with fi λ_1 times eigenvector. A1 : Dedu		
	$\begin{pmatrix} 1 & 1 & a \\ 2 & b & c \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 1-a \\ 2-c \\ -2 \end{pmatrix} =$	$\lambda_2 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, and so $c = 2$, $\lambda_2 = 2$	M1, A1, A1
	M1: Multiplies out matrix with sec λ_2 times eigenvector. A1: Dedu		
	$b+c=\lambda_1\text{ so }b=-1$	M1: Uses $b + c = \lambda_1$ with their λ_1 to find a value for b (They must have an equation in b and c from the first eigenvector to score this mark) A1: $b = -1$	M1A1
	$(a = -1, b = -1, c = 2, \lambda_1 = 1, \lambda_2 = 2)$	111.0	(8)
(b)(i)	detP = -d - 1	Allow $1 - d - 2$ or $1 - (2 + d)$ A correct (possibly un-simplified) determinant	B1
(ii)	$\mathbf{P}^{T} = \begin{pmatrix} 1 & 2 & -1 \\ 1 & 1 & 0 \\ 0 & d & 1 \end{pmatrix} $ or n cofactors $\begin{pmatrix} 1 & -2 - d \\ -1 & 1 \\ d & -d \end{pmatrix}$	ninors $\begin{pmatrix} 1 & d+2 & 1 \\ 1 & 1 & 1 \\ d & d & -1 \end{pmatrix}$ or $\begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$ a correct first step $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$	B1
	$\frac{1}{-d-1} \begin{pmatrix} 1 & -1 & d \\ -2-d & 1 & -d \\ 1 & -1 & -1 \end{pmatrix}$	M1: Identifiable full attempt at inverse including reciprocal of determinant. Could be indicated by at least 6 correct elements. A1: Two rows or two columns correct (ignoring determinant) BUT M0A1A0 or M0A1A1 is not possible A1: Fully correct inverse	M1 A1 A1
			(5) Total 13

Question Number	Sch	heme	Marks
6(a)	$I_n = \int_0^4 \frac{x^{n-1} \times x(16 - x^2)^{\frac{1}{2}} dx}{1 + x^2} dx$	M1: Obtains $x(16-x^2)^{\frac{1}{2}}$ prior to integration A1: Correct underlined expression (can be implied by their integration)	M1A1
	$I_n = \left[-\frac{1}{3} x^{n-1} (16 - x^2) \right]$	$\int_{0}^{\frac{3}{2}} \int_{0}^{4} + \frac{n-1}{3} \int_{0}^{4} x^{n-2} (16 - x^{2})^{\frac{3}{2}} dx$	dM1
	dM1: Parts in the co	rrect direction (Ignore limits)	
	$\therefore I_n = \frac{n-1}{3} \int_0^4 x^{n-2}$	$(16-x^2)(16-x^2)^{\frac{1}{2}}dx$	
	i.e. $I_n = \frac{16(n-1)}{3}I_{n-2} - \frac{n-1}{3}I_n$	Manipulates to obtain at least one integral in terms of I_n or I_{n-2} on the rhs.	M1
	$I_n(1+\frac{n-1}{3}) = \frac{16(n-1)}{3}I_{n-2}$	Collects terms in I_n from both sides	M1
	$(n+2)I_n = 16(n-1)I_{n-2} *$	Printed answer with no errors	A1*cso (6)
Way 2	$\int_0^4 x^n (16 - x^2)^{\frac{1}{2}} dx = \int_0^4 x^n \frac{(16 - x^2)}{(16 - x^2)^{\frac{1}{2}}}$	$dx = \int_0^4 \frac{16x^n}{(16-x^2)^{\frac{1}{2}}} dx - \int_0^4 \frac{x^{n+2}}{(16-x^2)^{\frac{1}{2}}} dx$	(0)
	$= \int_0^4 16x^{n-1} \times x(16 - x^2)^{-\frac{1}{2}}$	$dx - \int_0^4 x^{n+1} \times x (16 - x^2)^{-\frac{1}{2}} dx$	M1A1
	M1: Obtains $x(16-x^2)^{-\frac{1}{2}}$ prior to	integration A1: Correct expressions	
	$= \left[-16x^{n-1}(16 - x^2)^{\frac{1}{2}} \right]_0^4 + $ $- \left(\left[-x^{n+1}(16 - x^2)^{\frac{1}{2}} \right]_0^4 + (n^2)^{\frac{1}{2}} \right]_0^4 + (n^2)^{\frac{1}{2}} $	$16(n-1) \int_0^4 x^{n-2} (16-x^2)^{\frac{1}{2}} dx$ $(n+1) \int_0^4 x^n (16-x^2)^{\frac{1}{2}} dx$	dM1
	L	rection on both (Ignore limits)	
	$I_n = 16(n-1)I_{n-2} - (n+1)I_n$	Manipulates to obtain at least one integral in terms of I_n or I_{n-2} on the rhs.	M1
	$I_n(1+n+1) = 16(n-1)I_{n-2}$	Collects terms in I_n from both sides	M1
	$(n+2)I_n = 16(n-1)I_{n-2} *$	Printed answer with no errors	A1*
Way 3	$\int_0^4 x^n (16 - x^2)^{\frac{1}{2}} dx = \int_0^4 x \times x^{n-1} \frac{(16 - x^2)^{\frac{1}{2}}}{(16 - x^2)^{\frac{1}{2}}} dx$	A1: Correct expression	M1A1
	$= \left[-x^{n-1} (16 - x^2) (16 - x^2)^{\frac{1}{2}} \right]_0^4 + \int_0^4 (16 - x^2)^{\frac{1}{2}} dx$	$6(n-1)x^{n-2} - (n+1)x^{n})(16-x^{2})^{\frac{1}{2}}dx$	dM1
	dM1: Parts in the co	rrect direction (Ignore limits)	
	$I_n = 16(n-1)I_{n-2} - (n+1)I_n$	Manipulates to obtain at least one integral in terms of I_n or I_{n-2} on the rhs.	M1
	$I_n(1+n+1) = 16(n-1)I_{n-2}$	Collects terms in I_n from both sides	M1
	$(n+2)I_n = 16(n-1)I_{n-2} *$	Printed answer with no errors	A1*

Question Number	Sche	me	Marks
(b)	$I_1 = \int_0^4 x \sqrt{(16 - x^2)} dx = \left[-\frac{1}{3} (16 - x^2)^{\frac{3}{2}} \right]$	$\int_{0}^{4} = \frac{64}{3}$ M1: Correct integration to find I_{1} $A1: \frac{64}{3} \text{ or equivalent}$	M1 A1
		(May be implied by a later work – they are not asked explicitly for I_1)	
	$\frac{64}{3}$ must come from	om correct work	
	Using $x =$		
	$I_1 = \int_0^{\frac{\pi}{2}} 4\sin\theta \sqrt{(16 - 16\sin^2\theta)} 4$	$\cos\theta d\theta = \int_0^{\frac{\pi}{2}} 64\sin\theta \cos^2\theta d\theta$	
	$= \left[-\frac{64}{3} \right]$	$\cos^3 heta \bigg]_0^{\frac{\pi}{2}}$	
	M1: A <u>complete</u> substitution and at		
	A1: $\frac{64}{3}$ or 6	equivalent	
	$I_5 = \frac{64}{7}I_3, I_3 = \frac{32}{5}I_1$	Applies to apply reduction formula twice. First M1 for I_5 in terms of I_3 , second M1 for I_3 in terms of I_1 (Can be implied)	M1, M1
	$I_5 = \frac{131072}{105}$	Any <u>exact</u> equivalent (Depends on all previous marks having been scored)	A1
			(5)
			Total 11

Question Number	Sche	me	Marks
7(a)	$\left(\frac{dx}{d\theta} = -a\sin\theta \text{ and } \frac{dy}{d\theta} = a\sin\theta$	$(b\cos\theta)$ so $\frac{dy}{dx} = \frac{b\cos\theta}{-a\sin\theta}$	M1 A1
	M1: Differentiates both x a	nd y and divides correctly	
	A1: Fully corre	ect derivative	
		Alternative:	
	M1: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \Rightarrow \frac{2x}{a^2} + \frac{2yy'}{b^2} =$	$= 0 \Rightarrow y' = -\frac{b^2 x}{a^2 y} = -\frac{b^2 a \cos \theta}{a^2 b \sin \theta}$	
	Differentiates implicitly an	nd substitutes for x and y	
	$A1: = -\frac{b\cos\theta}{a\sin\theta}$		
	A1. =	$\frac{\overline{a\sin\theta}}$	
	Normal has gradient $\frac{a\sin\theta}{b\cos\theta}$ or $\frac{a^2y}{b^2x}$	Correct perpendicular gradient rule	M1
	$(y - b\sin\theta) = \frac{a\sin\theta}{b\cos\theta}(x - a\cos\theta)$	Correct straight line method using a "changed" gradient which is a function of θ	M1
	If $y = mx + c$ is used n	eed to find c for M1	
	$ax\sin\theta - by\cos\theta = (a$	$(a^2-b^2)\sin\theta\cos\theta$ *	A1
	Fully correct completi		
			(5)
(b)	$x = \frac{(a^2 - b^2)\cos\theta}{a}$	Allow un-simplified	В1
	$y = -\frac{(a^2 - b^2)\sin\theta}{b}$	Allow un-simplified	B1
	$x = \frac{(a^2 - b^2)\cos\theta}{a}$ $y = -\frac{(a^2 - b^2)\sin\theta}{b}$ $\left(=\frac{1}{2}\frac{(a^2 - b^2)^2\cos\theta\sin\theta}{ab}\right)$	$= \frac{1}{4} \frac{(a^2 - b^2)^2}{ab} \sin 2\theta$	M1A1
	M1: Area of triangle is ½"OA"×"OI	B" and uses double angle formula	
	corre		
	A1: Correct expression for t		
		-	(4)
(c)	Maximum area when $\sin 2\theta = 1$ so $\theta = \frac{\pi}{4}$ or 45	Correct value for θ (may be implied by correct coordinates)	B1
	So the point <i>P</i> is at $\left(\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right)$ oe	M1: Substitutes their value of θ where $0 < \theta < \frac{\pi}{2}$ or $0 < \theta < 90$ into	M1 A1
	$\left(a\cos\frac{\pi}{4}, b\sin\frac{\pi}{4}\right)$ scores B1M1A0	their parametric coordinates	
	4 4)	A1: Correct exact coordinates	
	Mark part (c) i	ndependently	
			(3)
			Total 12

	Question Number	Scho	eme	Marks
(a) Way 2 $r = (6\mathbf{i} + 2\mathbf{j} + 12\mathbf{k}) + \lambda(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k})$ $\therefore 6 + 3\lambda 3 + 2 - 4\lambda -4 + 12 + 2\lambda 2 = 5$ Substitutes the parametric coordinates of the line through $(6, 2, 12)$ perpendicular to the plane into the cartesian equation. $\lambda = -1 \Rightarrow 3, 6, 10 \text{ or } -3\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$ Solves for λ to obtain the required point or vector. $\sqrt{29}$ Correct distance (a) Way 3 Parallel plane containing $(6, 2, 12)$ is $\mathbf{r}.(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}) = 34$ $\Rightarrow \frac{\mathbf{r}.(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}) = 34}{\sqrt{29}} \Rightarrow \frac{34}{\sqrt{29}}$ Origin to this plane is $\frac{34}{\sqrt{29}}$ $\Rightarrow \frac{\mathbf{r}.(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}) = 34}{\sqrt{29}} \Rightarrow \frac{5}{\sqrt{29}} = \sqrt{29}$ Correct distance A1 (b) For a cross product, if the method is unclear, 2 out of 3 components should be correct for M1 Do not isw and mark the final answer e.g. $90 - 52 = 38$ loses the A1 (c) $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & -1 \\ 3 & 4 & 2 \end{vmatrix} = \frac{2}{-13}$ M1 M1 M1 M1 Do not isw and mark the final answer e.g. $90 - 52 = 38$ loses the A1 (c) $x = 0: (0, \frac{5}{2}, \frac{15}{2}), y = 0: (1, 0, 1), z = 0: (\frac{15}{13}, \frac{-5}{13}, 0)$ M1A1		(6i+2j+12k).(3i-4j+2k) = 34	Attempt scalar product	M1
(a) Way 2 $r = (6i + 2j + 12k) + \lambda(3i - 4j + 2k)$ $\therefore 6 + 3\lambda 3 + 2 - 4\lambda - 4 + 12 + 2\lambda 2 = 5$ Substitutes the parametric coordinates of the line through $(6, 2, 12)$ perpendicular to the plane into the cartesian equation. $\lambda = -1 \Rightarrow 3, 6, 10 \text{ or } -3i + 4j - 2k$ $\sqrt{29}$ Correct distance (a) Way 3 Parallel plane containing $(6, 2, 12)$ is $r.(3i - 4j + 2k) = 34$ $\Rightarrow \frac{r.(3i - 4j + 2k)}{\sqrt{29}} = \frac{34}{\sqrt{29}}$ Origin to this plane is $\frac{34}{\sqrt{29}}$ $\Rightarrow \frac{r.(3i - 4j + 2k)}{\sqrt{29}} = \frac{34}{\sqrt{29}}$ Origin to plane is $\frac{34}{\sqrt{29}}$ M1 $\frac{34}{\sqrt{29}} - \frac{5}{\sqrt{29}} = \sqrt{29}$ Correct distance A1 (b) For a cross product, if the method is unclear, 2 out of 3 components should be correct for M1 Attempts scalar product of normal vectors including magnitudes obtains angle using arccos (dependent on previous M1) Do not isw and mark the final answer e.g. $90 - 52 = 38$ loses the A1 (c) $\begin{vmatrix} i & j & k \\ 2 & 1 & 5 \\ -5 & 3 & 4 & 2 \end{vmatrix} = \frac{2}{-13}$ M1A1 M1A1 M1A1 Attempts scalar product of normal vectors including magnitudes obtains angle using arccos (dependent on previous M1) Do not isw and mark the final answer e.g. $90 - 52 = 38$ loses the A1 (c) $\begin{vmatrix} i & j & k \\ 1 & 3 & -1 \\ 3 & 4 & 2 \end{vmatrix} = \frac{2}{-13}$ M1A1 M1A1 M1A1		$\frac{(6\mathbf{i} + 2\mathbf{j} + 12\mathbf{k}) \cdot (3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}) - 5}{\sqrt{3^2 + 4^2 + 2^2}}$	Use of correct formula	M1
(a) Way 2 $\frac{\mathbf{r} = (6\mathbf{i} + 2\mathbf{j} + 12\mathbf{k}) + \lambda(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k})}{ 6 + 3\lambda 3 + 2 - 4\lambda - 4 + 12 + 2\lambda 2 = 5}$ Substitutes the parametric coordinates of the line through $(6, 2, 12)$ perpendicular to the plane into the cartesian equation. $\lambda = -1 \Rightarrow 3,6,10 \text{ or } -3\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$ Solves for λ to obtain the required point or vector. $\sqrt{29}$ Correct distance $A1$ (a) Way 3 $\frac{\mathbf{Parallel plane}}{\mathbf{Parallel plane}} = \mathbf{containing} (6, 2, 12) \text{ is } \mathbf{r}.(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}) = 34$ $\Rightarrow \frac{\mathbf{r}.(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k})}{\sqrt{29}} = \frac{34}{\sqrt{29}}$ Origin to this plane is $\frac{34}{\sqrt{29}}$ $\Rightarrow \frac{\mathbf{r}.(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k})}{\sqrt{29}} = \frac{5}{\sqrt{29}}$ Origin to plane is $\frac{5}{\sqrt{29}}$ M1 $\frac{34}{\sqrt{29}} - \frac{5}{\sqrt{29}} = \sqrt{29}$ Correct distance $A1$ (b) For a cross product, if the method is unclear, 2 out of 3 components should be correct for M1 $(\cos \theta) = \frac{(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}).(\mathbf{i} + 3\mathbf{j} - \mathbf{k})}{\sqrt{3^2 + 4^2 + 2^2}\sqrt{1^2 + 3^2 + 1^2}} = \frac{-11}{\sqrt{29}\sqrt{11}}$ M1 $Attempts scalar product of normal vectors including magnitudes}$ correct for M1 $\mathbf{Do not isw and mark the final answer e.g. 90 - 52 = 38 loses the A1}$ (c) $\mathbf{r} = \mathbf{j} \mathbf{j} \mathbf{k} = \frac{2}{13}$ $\mathbf{j} \mathbf{j} \mathbf{k} = \frac{2}{13}$ $\mathbf{j} \mathbf{j} \mathbf{k} = \frac{2}{13}$ $\mathbf{j} \mathbf{k} \mathbf{j} \mathbf{k} \mathbf{k} \mathbf{j} \mathbf{k} \mathbf{j} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{j} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{j} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{j} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} k$		$\sqrt{29} (\text{not} - \sqrt{29})$	Correct distance (Allow $29/\sqrt{29}$)	A1
Substitutes the parametric coordinates of the line through $(6, 2, 12)$ perpendicular to the plane into the cartesian equation. $\lambda = -1 \Rightarrow 3,6,10 \text{ or } -3\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$ Substitutes the parametric coordinates of the line through $(6, 2, 12)$ perpendicular to the plane into the cartesian equation. $\lambda = -1 \Rightarrow 3,6,10 \text{ or } -3\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$ Solves for λ to obtain the required point or vector. A1 (a) Way 3 Parallel plane containing $(6, 2, 12)$ is $\mathbf{r}.(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}) = 34$ $\Rightarrow \frac{\mathbf{r}.(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}) = 34}{\sqrt{29}} = \frac{34}{\sqrt{29}}$ Origin to this plane is $\frac{34}{\sqrt{29}}$ M1 $\frac{34}{\sqrt{29}} - \frac{5}{\sqrt{29}} = \sqrt{29}$ Correct distance A1 (b) For a cross product, if the method is unclear, 2 out of 3 components should be correct for M1 Attempts scalar product of normal vectors including magnitudes (cos θ) = $\frac{(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}).(\mathbf{i} + 3\mathbf{j} - \mathbf{k})}{\sqrt{3^2 + 4^2 + 2^2}.\sqrt{1^2 + 3^2 + 1^2}} = \frac{-11}{\sqrt{29}.\sqrt{11}}$ M1 Attempts scalar product of normal vectors including magnitudes (c) i j k 2				(3)
perpendicular to the plane into the cartesian equation. $ \lambda = -1 \Rightarrow 3,6,10 \text{ or } -3\mathbf{i} + 4\mathbf{j} - 2\mathbf{k} \qquad \text{Solves for } \lambda \text{ to obtain the required point or vector.} \qquad M1 $ (a) Way 3 Parallel plane containing $(6, 2, 12)$ is $\mathbf{r}.(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}) = 34$ $\Rightarrow \frac{\mathbf{r}.(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}) = 34}{\sqrt{29}} = \frac{34}{\sqrt{29}} \qquad \text{Origin to this plane is } \frac{34}{\sqrt{29}} \qquad M1$ $\Rightarrow \frac{\mathbf{r}.(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k})}{\sqrt{29}} = \frac{5}{\sqrt{29}} \qquad \text{Origin to plane is } \frac{5}{\sqrt{29}} \qquad M1$ $\frac{34}{\sqrt{29}} = \frac{5}{\sqrt{29}} = \sqrt{29} \qquad \text{Correct distance} \qquad A1$ $\begin{array}{c} \mathbf{m} \\ m$	(a) Way 2	,	,	M1
$\lambda = -1 \Rightarrow 3,6,10 \text{ or } -3\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$ $\sqrt{29}$ Correct distance A1 (a) Way 3 Parallel plane containing (6, 2, 12) is $\mathbf{r}.(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}) = 34$ $\Rightarrow \frac{\mathbf{r}.(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}) = 34}{\sqrt{29}} = \frac{34}{\sqrt{29}}$ Origin to this plane is $\frac{34}{\sqrt{29}}$ $\Rightarrow \frac{\mathbf{r}.(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}) = 34}{\sqrt{29}} = \frac{5}{\sqrt{29}}$ Origin to plane is $\frac{5}{\sqrt{29}}$ M1 $\frac{34}{\sqrt{29}} - \frac{5}{\sqrt{29}} = \sqrt{29}$ Correct distance A1 (b) For a cross product, if the method is unclear, 2 out of 3 components should be correct for M1 Attempts scalar product of normal vectors including magnitudes $(\cos \theta) = \frac{(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}).(\mathbf{i} + 3\mathbf{j} - \mathbf{k})}{\sqrt{3^2 + 4^2 + 2^2}} = \frac{-11}{\sqrt{29}\sqrt{11}}$ M1 Attempts scalar product of normal vectors including magnitudes (c) $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 5 \\ 1 & 1 & 1 & 2 \\ -5 & 3 & 4 & 2 \end{vmatrix} = \frac{2}{-5}$ M1 M1: Attempt cross product of normal vectors $(4\mathbf{p} - 2\mathbf{p} - 2\mathbf{k})$ minum and $(4\mathbf{m} - 2\mathbf{k})$ minum and $($		Substitutes the parametric coordin	ates of the line through (6, 2, 12)	
(a) Way 3 (a) Way 3 Parallel plane containing $(6, 2, 12)$ is $\mathbf{r}.(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}) = 34$ $\Rightarrow \frac{\mathbf{r}.(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k})}{\sqrt{29}} = \frac{34}{\sqrt{29}}$ Origin to this plane is $\frac{34}{\sqrt{29}}$ $\Rightarrow \frac{\mathbf{r}.(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k})}{\sqrt{29}} = \frac{5}{\sqrt{29}}$ Origin to plane is $\frac{5}{\sqrt{29}}$ M1 $\frac{34}{\sqrt{29}} - \frac{5}{\sqrt{29}} = \sqrt{29}$ Correct distance A1 (b) For a cross product, if the method is unclear, 2 out of 3 components should be correct for M1 Attempts scalar product of normal vectors including magnitudes correct for M1 (c) (c) (d) Attempts scalar product of normal vectors including magnitudes of the provious M1) Do not isw and mark the final answer e.g. $90 - 52 = 38$ loses the A1 (c) (d) (e) (f) (g) (h) (i) (g) (h) (ii) (g) (h) (ii) (h) (iii) (i		perpendicular to the plane i	nto the cartesian equation.	
(a) Way 3 Parallel plane containing $(6, 2, 12)$ is $\mathbf{r}.(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}) = 34$ $\Rightarrow \frac{\mathbf{r}.(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k})}{\sqrt{29}} = \frac{34}{\sqrt{29}}$ Origin to this plane is $\frac{34}{\sqrt{29}}$ $\Rightarrow \frac{\mathbf{r}.(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k})}{\sqrt{29}} = \frac{34}{\sqrt{29}}$ Origin to plane is $\frac{34}{\sqrt{29}}$ M1 $\frac{34}{\sqrt{29}} - \frac{5}{\sqrt{29}} = \sqrt{29}$ Correct distance A1 $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 5 \\ 1 & -1 & -2 \end{vmatrix} = \begin{pmatrix} 3 \\ 9 \\ -3 \end{pmatrix}$ Correct distance M1 Attempts $(2\mathbf{i} + 1\mathbf{j} + 5\mathbf{k}) \times (\mathbf{i} - \mathbf{j} - 2\mathbf{k})$ A1: Any multiple of $\mathbf{i} + 3\mathbf{j} - \mathbf{k}$ M1A1 $\mathbf{M} = \mathbf{M} = $		$\lambda = -1 \Rightarrow 3,6,10 \text{ or } -3\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$		M1
$r.(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}) = 34$ $\Rightarrow \frac{\mathbf{r}.(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k})}{\sqrt{29}} = \frac{34}{\sqrt{29}}$ Origin to this plane is $\frac{34}{\sqrt{29}}$ $\Rightarrow \frac{\mathbf{r}.(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k})}{\sqrt{29}} = \frac{34}{\sqrt{29}}$ Origin to this plane is $\frac{34}{\sqrt{29}}$ $\Rightarrow \frac{\mathbf{r}.(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k})}{\sqrt{29}} = \frac{5}{\sqrt{29}}$ Origin to plane is $\frac{5}{\sqrt{29}}$ M1 $\frac{34}{\sqrt{29}} - \frac{5}{\sqrt{29}} = \sqrt{29}$ Correct distance A1 $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 5 \\ 1 - 1 - 2 \end{vmatrix} = \frac{9}{-3} $ Origin to this plane is $\frac{34}{\sqrt{29}}$ M1 $\frac{34}{\sqrt{29}} - \frac{5}{\sqrt{29}} = \sqrt{29}$ Correct distance A1 $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 5 \\ 1 - 1 - 2 \end{vmatrix} = \frac{9}{-3} $ Origin to this plane is $\frac{34}{\sqrt{29}}$ M1 $\frac{34}{\sqrt{29}} - \frac{34}{\sqrt{29}} = \frac{5}{\sqrt{29}}$ Correct distance A1 $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & -1 \\ 3 & -4 & 2 \end{vmatrix} = \frac{9}{-3} $ Origin to this plane is $\frac{34}{\sqrt{29}}$ M1 $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & -1 \\ 3 & -4 & 2 \end{vmatrix} = \frac{5}{\sqrt{29}}$ Origin to this plane is $\frac{34}{\sqrt{29}}$ M1 $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & -1 \\ 3 & -4 & 2 \end{vmatrix} = \frac{5}{\sqrt{29}}$ Origin to this plane is $\frac{34}{\sqrt{29}}$ M1 $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & -1 \\ 3 & -4 & 2 \end{vmatrix} = \frac{5}{\sqrt{29}}$ Origin to this plane is $\frac{34}{\sqrt{29}}$ M1 $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & -1 \\ 3 & -4 & 2 \end{vmatrix} = \frac{5}{\sqrt{29}}$ Origin to this plane is $\frac{34}{\sqrt{29}}$ M1 $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & -1 \\ 3 & -4 & 2 \end{vmatrix} = \frac{1}{\sqrt{29}}$ M1 $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & -1 \\ 3 & -4 & 2 \end{vmatrix} = \frac{1}{\sqrt{29}}$ Origin to this plane is $\frac{34}{\sqrt{29}}$ M1 $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & -1 \\ 3 & -4 & 2 \end{vmatrix} = \frac{1}{\sqrt{29}}$ M1 $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & -1 \\ 3 & -4 & 2 \end{vmatrix} = \frac{1}{\sqrt{29}}$ Origin to this plane is $\frac{34}{\sqrt{29}}$ M1 $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 3 & -1 \\ 3 & -4 & 2 \end{vmatrix} = \frac{1}{\sqrt{29}}$ M1 $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & -1 \\ 3 & -4 & 2 \end{vmatrix} = \frac{1}{\sqrt{29}}$ Origin to this plane is $\frac{34}{\sqrt{29}}$ M1 $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 3 & -1 \\ 3 & -4 & 2 \end{vmatrix} = \frac{1}{\sqrt{29}}$ M1 $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 3 & -1 \\ 3 & -4 & 2 \end{vmatrix} = \frac{1}{\sqrt{29}}$ M1 $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 3 & -1 \\ 3 & -4 & 2 & -1 \end{vmatrix}$ M1 $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 3 & -1 \\ 3 & -1 & 3 & -1 \end{vmatrix}$ M1 $\begin{vmatrix} \mathbf{i} &$		$\sqrt{29}$	Correct distance	A1
$\frac{\mathbf{j} \cdot \mathbf{r} \cdot (3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k})}{\sqrt{29}} = \frac{5}{\sqrt{29}} \qquad \text{Origin to plane is } \frac{5}{\sqrt{29}} \qquad \text{M1}$ $\frac{34}{\sqrt{29}} - \frac{5}{\sqrt{29}} = \sqrt{29} \qquad \text{Correct distance} \qquad \text{A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{29}} - \frac{1}{\sqrt{29}} = \sqrt{29} \qquad \text{Correct distance} \qquad \text{A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{29}} - \frac{1}{\sqrt{29}} = \sqrt{29} \qquad \text{Correct distance} \qquad \text{A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{29}} - \frac{1}{\sqrt{29}} = \sqrt{29} \qquad \text{Correct distance} \qquad \text{A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{29}} - \frac{1}{\sqrt{29}} = \sqrt{29} \qquad \text{M1A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{29}} - \frac{1}{\sqrt{29}} = \sqrt{29} \qquad \text{M1A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{11} - 1 - 2} = \sqrt{29} \qquad \frac{1}{\sqrt{11}} \qquad \text{M1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{3^2 + 4^2 + 2^2} \sqrt{1^2 + 3^2 + 1^2}} = \sqrt{29} \sqrt{11} \qquad \text{M1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{39}} - \frac{1}{\sqrt{29}} = \sqrt{29} \qquad \text{M1A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{3^2 + 4^2 + 2^2} \sqrt{1^2 + 3^2 + 1^2}} = \sqrt{29} \sqrt{11} \qquad \text{M1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{39}} - \frac{1}{\sqrt{29}} = \sqrt{29} \qquad \text{M1A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{3^2 + 4^2 + 2^2} \sqrt{1^2 + 3^2 + 1^2}}} = \sqrt{29} \sqrt{11} \qquad \text{M1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{39}} - \frac{1}{\sqrt{29}} = \sqrt{29} \qquad \text{M1A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{39}} - \frac{1}{\sqrt{29}} = \sqrt{29} \qquad \text{M1A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{39}} - \frac{1}{\sqrt{29}} = \sqrt{29} \qquad \text{M1A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{39}} - \frac{1}{\sqrt{29}} = \sqrt{11} \qquad \text{M1A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{39}} - \frac{1}{\sqrt{29}} = \sqrt{11} \qquad \text{M1A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{39}} - \frac{1}{\sqrt{29}} = \sqrt{11} \qquad \text{M1A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{39}} - \frac{1}{\sqrt{29}} = \sqrt{11} \qquad \text{M1A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{39}} - \frac{1}{\sqrt{39}} = \sqrt{11} \qquad \text{M1A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{39}} - \frac{1}{\sqrt{39}} = \sqrt{11} \qquad \text{M1A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{39}} - \frac{1}{\sqrt{39}} = \sqrt{11} \qquad \text{M1A1}$	(a) Way 3	$\mathbf{r}.(3\mathbf{i}-4\mathbf{j}+2\mathbf{k})=34$	Origin to this plane is $\frac{34}{\sqrt{29}}$	M1
$\frac{\mathbf{j} \cdot \mathbf{r} \cdot (3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k})}{\sqrt{29}} = \frac{5}{\sqrt{29}} \qquad \text{Origin to plane is } \frac{5}{\sqrt{29}} \qquad \text{M1}$ $\frac{34}{\sqrt{29}} - \frac{5}{\sqrt{29}} = \sqrt{29} \qquad \text{Correct distance} \qquad \text{A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{29}} - \frac{1}{\sqrt{29}} = \sqrt{29} \qquad \text{Correct distance} \qquad \text{A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{29}} - \frac{1}{\sqrt{29}} = \sqrt{29} \qquad \text{Correct distance} \qquad \text{A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{29}} - \frac{1}{\sqrt{29}} = \sqrt{29} \qquad \text{Correct distance} \qquad \text{A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{29}} - \frac{1}{\sqrt{29}} = \sqrt{29} \qquad \text{M1A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{29}} - \frac{1}{\sqrt{29}} = \sqrt{29} \qquad \text{M1A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{11} - 1 - 2} = \sqrt{29} \qquad \frac{1}{\sqrt{11}} \qquad \text{M1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{3^2 + 4^2 + 2^2} \sqrt{1^2 + 3^2 + 1^2}} = \sqrt{29} \sqrt{11} \qquad \text{M1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{39}} - \frac{1}{\sqrt{29}} = \sqrt{29} \qquad \text{M1A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{3^2 + 4^2 + 2^2} \sqrt{1^2 + 3^2 + 1^2}} = \sqrt{29} \sqrt{11} \qquad \text{M1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{39}} - \frac{1}{\sqrt{29}} = \sqrt{29} \qquad \text{M1A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{3^2 + 4^2 + 2^2} \sqrt{1^2 + 3^2 + 1^2}}} = \sqrt{29} \sqrt{11} \qquad \text{M1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{39}} - \frac{1}{\sqrt{29}} = \sqrt{29} \qquad \text{M1A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{39}} - \frac{1}{\sqrt{29}} = \sqrt{29} \qquad \text{M1A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{39}} - \frac{1}{\sqrt{29}} = \sqrt{29} \qquad \text{M1A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{39}} - \frac{1}{\sqrt{29}} = \sqrt{11} \qquad \text{M1A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{39}} - \frac{1}{\sqrt{29}} = \sqrt{11} \qquad \text{M1A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{39}} - \frac{1}{\sqrt{29}} = \sqrt{11} \qquad \text{M1A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{39}} - \frac{1}{\sqrt{29}} = \sqrt{11} \qquad \text{M1A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{39}} - \frac{1}{\sqrt{39}} = \sqrt{11} \qquad \text{M1A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{39}} - \frac{1}{\sqrt{39}} = \sqrt{11} \qquad \text{M1A1}$ $\frac{\mathbf{j} \cdot \mathbf{k}}{\sqrt{39}} - \frac{1}{\sqrt{39}} = \sqrt{11} \qquad \text{M1A1}$		$\Rightarrow \frac{1}{\sqrt{29}} = \frac{1}{\sqrt{29}}$	_	
For a cross product, if the method is unclear, 2 out of 3 components should be correct for M1 (c) $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 5 \\ 1 & -1 & -2 \end{vmatrix} = \begin{pmatrix} 3 \\ 9 \\ -3 \end{pmatrix}$ $\begin{vmatrix} \mathbf{M1} : \text{Attempts} \\ (2\mathbf{i} + 1\mathbf{j} + 5\mathbf{k}) \times (\mathbf{i} - \mathbf{j} - 2\mathbf{k}) \\ \text{A1: Any multiple of } \mathbf{i} + 3\mathbf{j} - \mathbf{k} \end{vmatrix}$ $(\cos \theta) = \frac{(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}) \cdot (\mathbf{i} + 3\mathbf{j} - \mathbf{k})}{\sqrt{3^2 + 4^2 + 2^2} \sqrt{1^2 + 3^2 + 1^2}} = \frac{-11}{\sqrt{29} \sqrt{11}} $ $\mathbf{M1}$ $\mathbf{M1}$ $\mathbf{M2}$ $\mathbf{M3}$ $\mathbf{M4}$ $\mathbf{M3}$ $\mathbf{M4}$ $\mathbf{M5}$ $\mathbf{M4}$ $\mathbf{M5}$ $\mathbf{M5}$ $\mathbf{M5}$ $\mathbf{M6}$ $\mathbf{M6}$ $\mathbf{M6}$ $\mathbf{M6}$ $\mathbf{M6}$ $\mathbf{M6}$ $\mathbf{M7}$ $\mathbf{M8}$		$\Rightarrow \frac{\mathbf{r}.(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k})}{\sqrt{29}} = \frac{5}{\sqrt{29}}$	Origin to plane is $\frac{5}{\sqrt{29}}$	M1
unclear, 2 out of 3 components should be correct for M1 (c) $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & -1 \\ 3 & -4 & 2 \end{vmatrix} = \begin{pmatrix} 2 \\ -5 \\ 3 & -4 & 2 \end{vmatrix} \cdot \begin{pmatrix} 2 \\ -5 \\ -13 \end{pmatrix} $ M1 M1 M1 M1 M1 M1 M1 M1 M1 M		$\frac{34}{\sqrt{29}} - \frac{5}{\sqrt{29}} = \sqrt{29}$	Correct distance	A1
unclear, 2 out of 3 components should be correct for M1 (c) $ \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & -1 \\ 3 & -4 & 2 \end{vmatrix} = \begin{pmatrix} 2 \\ -5 \\ 3 & -4 & 2 \end{vmatrix} \cdot \begin{pmatrix} 2 \\ -5 \\ -13 \end{pmatrix} $ M1 $ x = 0: (0, \frac{5}{2}, \frac{15}{2}), y = 0: (1, 0, 1), z = 0: (\frac{15}{13}, \frac{-5}{13}, 0) $ M1 M1 M1 M1 M1 M1 M1 M1 M1 M	For a cross product, if	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 5 \\ 1 - 1 - 2 \end{vmatrix} = \begin{pmatrix} 3 \\ 9 \\ - 3 \end{pmatrix}$	$(2\mathbf{i}+1\mathbf{j}+\hat{5}\mathbf{k})\times(\mathbf{i}-\mathbf{j}-2\mathbf{k})$	M1A1
should be correct for M152Obtains angle using arccos (dependent on previous M1)dM1 A1Do not isw and mark the final answer e.g. $90 - 52 = 38$ loses the A1(c) i j k 2	out of 3	$(\cos \theta) = \frac{(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}).(\mathbf{i})}{\sqrt{3^2 + 4^2 + 2^2}} \sqrt{1^2}$	$\frac{+3\mathbf{j}-\mathbf{k}}{+3^2+1^2} = \left(=\frac{-11}{\sqrt{29}\sqrt{11}}\right)$	M1
M1 Do not isw and mark the final answer e.g. $90 - 52 = 38$ loses the A1 (c) $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & -1 \\ 3 & -4 & 2 \end{vmatrix} = \begin{pmatrix} 2 \\ -5 \\ -13 \end{pmatrix}$ M1: Attempt cross product of normal vectors A1: Correct vector $x = 0: (0, \frac{5}{2}, \frac{15}{2}), y = 0: (1, 0, 1), z = 0: (\frac{15}{13}, \frac{-5}{13}, 0)$ M1A1	-	Attempts scalar product of norm	al vectors including magnitudes	
Column 1		52		dM1 A1
(c) $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & -1 \\ 3 & -4 & 2 \end{vmatrix} = \begin{pmatrix} 2 \\ -5 \\ -13 \end{pmatrix}$ $\frac{\text{M1: Attempt cross product of normal vectors}}{\text{A1: Correct vector}}$ $x = 0: (0, \frac{5}{2}, \frac{15}{2}), y = 0: (1, 0, 1), z = 0: (\frac{15}{13}, \frac{-5}{13}, 0)$ M1A1	1411	Do not isw and mark the final ans	wer e.g. $90 - 52 = 38$ loses the A1	(5)
$\begin{vmatrix} 3-4 & 2 & -13 \end{vmatrix} & \text{A1: Correct vector} \\ x = 0: (0, \frac{5}{2}, \frac{15}{2}), y = 0: (1, 0, 1), z = 0: (\frac{15}{13}, \frac{-5}{13}, 0) $ M1A1	(c)	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & -1 \end{vmatrix} = \begin{pmatrix} 2 \\ -5 \end{pmatrix}$	M1: Attempt cross product of normal vectors	M1A1
$x = 0: (0, \frac{5}{2}, \frac{15}{2}), y = 0: (1, 0, 1), z = 0: (\frac{15}{13}, \frac{-5}{13}, 0)$ M1A1		$\begin{vmatrix} 3-4 & 2 \end{vmatrix} \begin{pmatrix} -13 \end{pmatrix}$	A1: Correct vector	
3.61.37.12.1		$x = 0: (0, \frac{5}{2}, \frac{15}{2}), y = 0: (1$	$z = 0: (\frac{15}{13}, \frac{-5}{13}, 0)$	M1A1
M1: Valid attempt at a point on both planes. A1: Correct coordinates May use way 3 to find a point on the line		M1: Valid attempt at a point on bo	th planes. A1: Correct coordinates	
$r \times (-2i+5j+13k) = -5i-15j+5k$ $may use way 3 to find a point on the fine M1: r \times dir = pos.vector \times dir (This way round) M1A1 A1: Correct equation$			M1: $\mathbf{r} \times \text{dir} = \text{pos.vector} \times \text{dir}$ (This way round)	M1A1
<u> </u>			A1. Contect equation	(6)

Question Number	Schem	ne	Marks
(c) Way 2	" $x + 3y - z = 0$ " and $3x - 4y + 2z = 5$ eliminate x, or y or z and substitutes bacterms of the	ck to obtain two of the variables in	M1
	$(x = 1 - \frac{2}{5} y \text{ and } z = 1 + \frac{13}{5} y) \text{ or } (y = \frac{5 - 5x}{2} \text{ and } z = \frac{15 - 13x}{2})$	$y = \frac{5z - 5}{13}$ and $x = \frac{15 - 2z}{13}$) or	A1
	Cartesian Equations: $x = \frac{y - \frac{5}{2}}{-\frac{5}{2}} = \frac{z - \frac{15}{2}}{-\frac{13}{2}} \text{ or } \frac{x - 1}{-\frac{2}{5}} = y = \frac{z - 1}{\frac{13}{5}} \text{ or } \frac{x - \frac{15}{13}}{-\frac{2}{13}} = \frac{y + \frac{5}{13}}{\frac{5}{13}} = z$		
	Points and Directions: Directions: $(0, \frac{5}{2}, \frac{15}{2})$, $\mathbf{i} - \frac{5}{2}\mathbf{j} - \frac{13}{2}\mathbf{k}$ or $(1, 0, 1)$, $-\frac{2}{5}\mathbf{i} + \mathbf{j} + \frac{15}{2}\mathbf{k}$	• •	M1 A1
	M1:Uses their Cartesian equations correctly to obtain a point and direction A1: Correct point and direction – it may not be clear which is which – i.e. look for the correct numbers either as points or vectors		
	Equation of line in required form: e.g. $\mathbf{r} \times (-2\mathbf{i} + 5\mathbf{j} + 13\mathbf{k}) = -5\mathbf{i} - 15\mathbf{j} + 5\mathbf{k}$ Or Equivalent		M1 A1
			(6)
(c) Way 3	$\begin{pmatrix} 2\lambda + \mu \\ \lambda - \mu \\ 5\lambda - 2\mu \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -4 \\ 2 \end{pmatrix} = 5 \Rightarrow 12\lambda + 3\mu = 5$	M1: Substitutes parametric form of Π_2 into the vector equation of Π_1 A1: Correct equation	M1A1
	$\mu = \frac{5}{3}, \lambda = 0 \text{ gives } (\frac{5}{3}, -\frac{5}{3}, \frac{10}{3})$	M1: Finds 2 points and direction	
	$\mu = 0, \lambda = \frac{5}{12} \text{ gives } (\frac{5}{6}, \frac{5}{12}, \frac{25}{12})$ Direction $\begin{pmatrix} -2\\5\\13 \end{pmatrix}$	A1: Correct coordinates and direction	M1A1
	Equation of line in required form: e.g. $\mathbf{r} \times (-2\mathbf{i} + 5\mathbf{j} + 13\mathbf{k}) = -5\mathbf{i} - 15\mathbf{j} + 5\mathbf{k}$ Or Equivalent		M1A1
	Do not allow 'mixed' methods – mark the best single attempt NB for checking, a general point on the line will be of the form: $(1 - 2\lambda, 5\lambda, 1 + 13\lambda)$		